|
In mathematics, the Chowla–Mordell theorem is a result in number theory determining cases where a Gauss sum is the square root of a prime number, multiplied by a root of unity. It was proved and published independently by Sarvadaman Chowla and Louis Mordell, around 1951. In detail, if is a prime number, a nontrivial Dirichlet character modulo , and : where is a primitive -th root of unity in the complex numbers, then : is a root of unity if and only if is the quadratic residue symbol modulo . The 'if' part was known to Gauss: the contribution of Chowla and Mordell was the 'only if' direction. The ratio in the theorem occurs in the functional equation of L-functions. ==References== * ''Gauss and Jacobi Sums'' by Bruce C. Berndt, Ronald J. Evans and Kenneth S. Williams, Wiley-Interscience, p. 53. fi:Chowlan–Mordellin lause 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Chowla–Mordell theorem」の詳細全文を読む スポンサード リンク
|